Askey-wilson Functions and Quantum Groups

نویسنده

  • JASPER V. STOKMAN
چکیده

Eigenfunctions of the Askey-Wilson second order q-difference operator for 0 < q < 1 and |q| = 1 are constructed as formal matrix coefficients of the principal series representation of the quantized universal enveloping algebra Uq(sl(2,C)). The eigenfunctions are in integral form and may be viewed as analogues of Euler’s integral representation for Gauss’ hypergeometric series. We show that for 0 < q < 1 the resulting eigenfunction can be rewritten as a very-well-poised 8φ7-series, and reduces for special parameter values to a natural elliptic analogue of the cosine kernel. Dedicated to Mizan Rahman

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ug 1 99 6 8 LECTURES ON QUANTUM GROUPS AND q - SPECIAL FUNCTIONS

The lecture notes contains an introduction to quantum groups, q-special functions and their interplay. After generalities on Hopf algebras, orthogonal polynomials and basic hypergeometric series we work out the relation between the quantum SU(2) group and the Askey-Wilson polynomials out in detail as the main example. As an application we derive an addition formula for a two-parameter subfamily...

متن کامل

QUANTUM GROUPS AND q - SPECIAL FUNCTIONS

The lecture notes contains an introduction to quantum groups, q-special functions and their interplay. After generalities on Hopf algebras, orthogonal polynomials and basic hypergeometric series we work out the relation between the quantum SU(2) group and the Askey-Wilson polynomials out in detail as the main example. As an application we derive an addition formula for a two-parameter subfamily...

متن کامل

Fourier transforms on the quantum SU(1,1) group

The main goal is to interpret the Askey-Wilson function and the corresponding transform pair on the quantum SU(1, 1) group. A weight on the C *-algebra of continuous functions vanishing at infinity on the quantum SU(1, 1) group is studied, which is left and right invariant in a weak sense with respect to a product defined using Wall functions. The Haar weight restricted to certain subalgebras a...

متن کامل

Askey-Wilson Polynomials as Zonal Spherical Functions on the SU(2) Quantum Group

On the SU(2) quantum group the notion of (zonal) spherical element is generalized by considering left and right invariance in the infinitesimal sense with respect to twisted primitive elements of the sl(2) quantized universal enveloping algebra. The resulting spherical elements belonging to irreducible representations of quantum SU(2) turn out to be expressible as a two-parameter family of Aske...

متن کامل

A second addition formula for continuous q-ultraspherical polynomials

This paper provides the details of Remark 5.4 in the author’s paper “Askey-Wilson polynomials as zonal spherical functions on the SU(2) quantum group”, SIAM J. Math. Anal. 24 (1993), 795–813. In formula (5.9) of the 1993 paper a two-parameter class of Askey-Wilson polynomials was expanded as a finite Fourier series with a product of two 3phi2’s as Fourier coefficients. The proof given there use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003